Cannabis sativa L. is used as fiber, food, and medicine in several countries. Though it is illegal for recreational use in most of the world, there are some countries that have legalized production and sale. There is a lot of research on production of cannabis, but less so on storage technologies. Cannabis contains several high value compounds, such as cannabinoids and terpenoids, that are susceptible to degradation via light, temperature, and oxygen. Several studies have explored temperature and light, and industry has adjusted accordingly. However, less is known about oxygen-induced degradation. Biochemical studies have demonstrated oxidative degradation of high value compounds, and many producers use some form of modified atmospheric packaging (MAP) for storage. However, the efficacy of MAP is unclear. The objective of this paper is to review our current understanding of MAP in postharvest cannabis storage and identify avenues where additional research is needed.
Bitter melon fruit is susceptible to yellowing,softening,and rotting under room-temperature storage conditions,resulting in reduced commercial value.Nitric oxide(NO)is an important signaling molecule and plays a crucial role in regulating the fruit postharvest quality.In this study,we investigated the effects of NO treatment on changes in sensory and firmness of bitter melon fruit during postharvest storage.Moreover,transcriptomic,metabolomic,and proteomic analyses were performed to elucidate the regulatory mechanisms through which No treatment delays the ripening and senescence of bitter melon fruit.Our results show that differentially expressed genes(DEGs)were involved in fruit texture(CSLE,β-Gal,and PME),plant hormone signal transduction(ACS,JAR4,and AUX28),and fruit flavor and aroma(SUS2,LOX,and GDH2).In addition,proteins differentially abundant were associated with fruit texture(PLY,PME,and PGA)and plant hormone signal transduction(PBL15,JAR1,and PYL9).Moreover,No significantly increased the abundance of key enzymes involved in the phenylpropanoid biosynthetic pathway,thus enhancing the disease resistance and alleviating softening of bitter melon fruit.Finally,differential metabolites mainly included phenolic acids,terpenoids,and flavonoids.These results provide a theoretical basis for further studies on the physiological changes associated with postharvest ripening and senescence of bitter melon fruit.
The firmness of table grape berries is a crucial quality parameter. Despite extensive research on postharvest fruit softening, its precise molecular mechanisms remain elusive. To enhance our comprehension of the underlying molecular factors, we initially identified differentially expressed genes(DEGs) by comparing the transcriptomes of folic acid(FA)-treated and water-treated(CK) berries at different time points. We then analyzed the sequences to detect alternatively spliced(AS) genes associated with postharvest softening. A total of 2,559 DEGs were identified and categorized into four subclusters based on their expression patterns, with subcluster-4 genes exhibiting higher expression in the CK group compared with the FA treatment group. There were 1,045 AS-associated genes specific to FA-treated berries and 1,042 in the CK-treated berries, respectively. Gene Ontology(GO) annotation indicated that the AS-associated genes in CK-treated berries were predominantly enriched in cell wall metabolic processes,particularly cell wall degradation processes. Through a comparison between treatment-associated AS genes and subcluster-4 DEGs, we identified eight genes, including Pectinesterase 2(VvPE2, Vitvi15g00704), which encodes a cell wall-degrading enzyme and was predicted to undergo an A3SS event. The reverse transcription polymerase chain reaction further confirmed the presence of a truncated transcript variant of VvPE2 in the FA-treated berries.Our study provides a comprehensive analysis of AS events in postharvest grape berries using transcriptome sequencing and underscores the pivotal role of VvPE2 during the postharvest storage of grape berries.
This study evaluated the variation in yellow root cassava (Manihot esculentus Crantz) genotypes and phenotypic relationship for selected postharvest and morphological traits. The trial was established at the Njala Agricultural Research Centre experimental site, Njala, during 2017/2018 cropping season in a randomized complete block design with three replications. Findings showed that the higher the total carotene content (TCC) in yellow flesh cassava genotypes, the longer the rate of postharvest physiological deterioration (PPD). Genotypes TR-0051-TCC/17 and TR-0012-TCC/17 recorded higher TCC (18.9 µg/g and 13.6 µg/g) and longer rate of PPD (4.29 and 3.14), respectively. Genotypes TR-0051-TCC/17, TR-0016-TCC/17, TR-0028-TCC/17, TR-0012-TCC/17 and TR-0020-TCC/17 had the highest TCC values of 18.9 µg/g, 16.09 µg/g, 14.72 µg/g, 13.6 µg/g and 11.23 µg/g with corresponding higher color chart values of 6, 6, 6, 5, and 6, respectively. This suggests the direct dependence of TCC on the root parenchyma color intensity in yellow flesh cassava genotypes. Findings also show a direct relationship between morphological and postharvest traits in yellow flesh cassava genotypes that could be exploited for the genetic improvement of cassava for increased shelf life, nutrition and related quality traits, as well as conservation and utilization of the crop.