We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the interlayer covalent bonds due to the local sp^(3) hybridization of carbon atoms in the bilayer graphene seriously reduces the frictional coefficient of the bilayer graphene surface to 30%,depending on the coverage of interlayer sp^(3) bonds and normal loads.For a certain coverage of interlayer sp3bonds,when the normal load of the slider reaches a certain value,the surface of this interlayer bonded bilayer graphene will lose the friction reduction effect on the slider.Our findings provide guidance for the regulation and manipulation of the frictional properties of bilayer graphene surfaces through interlayer covalent bonds,which may be useful for applications of friction related graphene based nanodevices.
Almost all sandstone reservoirs contain interlayers. The identification and characterization of these interlayers iscritical for minimizing the uncertainty associated with oilfield development and improving oil and gas recovery.Identifying interlayers outside wells using identification methods based on logging data and machine learning isdifficult and seismic-based identification techniques are expensive. Herein, a numerical model based on seepageand well-testing theories is introduced to identify interlayers using transient pressure data. The proposed modelrelies on the open-source MATLAB Reservoir Simulation Toolbox. The effects of the interlayer thickness, position,and width on the pressure response are thoroughly investigated. A procedure for inverting interlayer parametersin the reservoir using the bottom-hole pressure is also proposed. This method uses only transient pressuredata during well testing and can effectively identify the interlayer distribution near the wellbore at an extremelylow cost. The reliability of the model is verified using effective oilfield examples.
Hao LuoHaibo DengHonglin XiaoShaoyang GengFu HouGang LuoYaqi Li
Multi-resonance thermally activated delayed fluorescence(MR-TADF)materials are promising candidates for organic light-emitting diodes(OLEDs)with narrow electroluminescence(EL)spectra.Current researches focus on fabricating hyperfluorescence OLEDs to improve EL efficiencies of MR-TADF emitters by co-doping them with TADF sensitizers in a single host layer.However,in many cases,the polarity of the single host could be not suitable for both blue MRTADF emitters and blue TADF sensitizers,resulting in broadened EL spectra in high-polar hosts or decreased EL efficiencies in low-polar hosts.Herein,we wish to report an efficient sensitization strategy for blue MR-TADF emitters by constructing an interlayer-sensitizing configuration,in which the blue TADF sensitizers and blue MR-TADF emitters are separated into two closely aligned host layers with high polarity and low polarity,respectively.Based on this strategy,efficient blue hyperfluorescence OLEDs are realized and verified by employing various TADF sensitizers and different MR-TADF emitters,furnishing outstanding external quantum efficiencies of up to 38.8%and narrow EL spectra.These results validate the feasibility and universality of this interlayer sensitization strategy,which provides an effective alternative to high-performance blue hyperfluorescence OLEDs.
Based on first-principles calculations, we systematically study the stacking energy and interlayer magnetic interaction of the heterobilayer composed of CrI_(3) and CrSe_(2) monolayers. It is found that the stacking order plays a crucial role in the interlayer magnetic coupling. Among all possible stacking structures, the AA-stacking is the most stable heterostructure, exhibiting interlayer antiferromagnetic interactions. Interestingly, the interlayer magnetic interaction can be effectively tuned by biaxial strain. A 4.3% compressive strain would result in a ferromagnetic interlayer interaction in all stacking orders. These results reveal the magnetic properties of CrI_(3)/CrSe_(2) heterostructure, which is expected to be applied to spintronic devices.
Polydopamine(PDA)and metal-organic skeleton HKUST-1 were co-deposited on the base membrane of hexamethylenediamine(HDA)-crosslinked polyetherimide(PEI)ultrafiltration membrane as the interlayer,and high-throughput organic solvent nanofiltration membrane(OSN)was prepared by interfacial polymerization and solvent activation reaction.The polyamide(PA)layer surface roughness from 28.4 nm in PA/PEI to 78.3 nm in PA/PDA-HKUST-10.6/PEI membrane,reduced the thickness of the separation layer from 79 to 14 nm,and significantly improved the hydrophilic,thermal and mechanical properties.The flux of the PA/PDA-HKUST-10.6/PEI membrane in a 0.1 g/L Congo Red(CR)ethanol solution at 0.6 MPa test pressure reached 21.8 L/(m^(2)·hr)and the rejection of CR was 92.8%.Solvent adsorption test,N,N-dimethylformamide(DMF)immersion experiment,and long-term operation test in ethanol showed that the membranes had high solvent tolerance.The solvent flux test demonstrated that,under the test pressure of 0.6 MPa,the flux of different solvents ranked as follows:methanol(56.9 L/(m^(2)·hr))>DMF(39.6 L/(m^(2)·hr))>ethanol(31.2 L/(m^(2)·hr))>IPA(4.5 L/(m^(2)·hr))>N-hexane(1.9 L/(m^(2)·hr)).The ability of the membranes to retain dyes in IPA/water dyes solution was also evaluated.The flux of the membrane was 30.4 L/(m^(2)·hr)and the rejection of CR was 91.6%when the IPA concentration reached 50%.This OSN membrane-making strategy is economical,environment-friendly and efficient,and has a great application prospect in organic solvent separation systems.
Haike LiXindong LiGuozai OuyangLijinhong HuangLang LiWenhao LiWanfu HuangDuokun Li
Stacking single layers of atoms on top of each other provides a fundamental way to achieve novel material systems and engineer their physical properties,which offers opportunities for exploring fundamental physics and realizing next-generation optoelectronic devices.Among the two-dimensional(2D)-stacked systems,transition metal dichalcogenide(TMDC)heterostructures are particularly attractive because they host tightly-bonded interlayer excitons which possess various novel and appealing properties.These interlayer excitons have drawn significant research attention and hold high potential for the application in unique optoelectronic devices,such as polarization-and wavelength-tunable single photon emitters,valley Hall transistors,and possible high-temperature superconductors.The development of these devices requires a comprehensive understanding of the fundamental properties of these interlayer excitons and the impact of electric fields on their behaviors.In this review,we summarize the recent advances on the understanding of interlayer exciton dynamics under electric fields in TMDC heterostructures.We put emphasis on the electrical modulation of interlayer excitons’emission,the valley Hall transport of charge carriers after the separation of interlayer excitons by an electric field,and the correlation physics of interlayer excitons and charges under electrical doping and tuning.Challenges and perspectives are finally discussed for the application of TMDC heterostructures in future optoelectronics.