将水稻移植到0.2 mmol/L Ca SO4溶液中饥饿2 d,采用改进耗竭法研究了3种铵硝配比条件下3个不同硅效应水稻(耐低硅的硅高效水稻特优998和不耐低硅的硅高效水稻特优248以及硅不敏感水稻博Ⅱ优15)硅吸收动力学特征。结果表明:作图法和双倒数法动力学方程准确性高,达到极显著水平;不同铵硝配比条件水稻硅吸收动力学曲线均符合Michaelis-Menten酶动力学模型的描述;铵硝配比对不同的硅效应水稻的硅载体数量影响不显著,显著影响水稻对硅的亲和力。本实验条件下铵硝配比50/50有利于水稻特优248对硅的吸收,铵硝比75/25时吸收速率最低;特优998对硅有较高的亲和力,可能是其耐低硅高效的遗传性差别。
[Objective] The aim was to explore physiological responses of Brazil banana seedlings to drought stress simulated by PEG-6000.[Method] Brazil banana (Musa AAA Cavendish subgroup cv.Brazil) was taken as test materials to explore changes of physiological indices of banana seedlings under drought stresses simulated by PEG-6000,including three stress levels (5%,10% and 15%) and time periods (24,48 and 72 h).[Result] Relative water content and chlorophyll content both declined under different stress levels and in different times.The content of proline (Pro) in seedling leaves from high to low was PEG15%,PEG10% and PEG5%; the content of treatment of 5% stress in 24 h was of insignificant differences with that of the control and the contents in rest treatments were all remarkably higher compared with the control.POD activities of seedling leaves from high to low were as follows:PEG15%>PEG10%>PEG5%,and POD activity was of significant differences among treatments; POD activity achieved the peak in treatment group with 5% of stress,and POD activities of different groups were all higher compared with the control.The activity of root system in treatment groups with PEG at different concentrations was as follows:PEG10%>PEG15%>PEG5% and the activity increased remarkably in the group with PEG at 5% within 24,48 and 72 h,though the activity dropped significantly within 72 h and slowly in 24 and 48 h.[Conclusion] It can be concluded that relative water content,chlorophyll content,Pro content and activity and root activity can be references of banana resistance to drought.