For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tostay(TTS) to reduce the unnecessary handover numbers.First, the proposed AHO parameter is used to decrease the computation complexity in multiple candidate base stations(CBSs) scenario. Then, two types of TTS parameters are given for the fixed base stations and mobile base stations to make handover decisions among multiple CBSs. The simulation results show that the proposed LTBH algorithm can not only maintain the required transmission rate of users, but also effectively reduce the unnecessary numbers of handover in the dense macro-femto networks with the coexisting mobile BSs.
在大规模多输入多输出(multiple-input multiple-output,MIMO)系统信号检测中,最小均方误差(minimum mean square error,MMSE)算法可以得到近似最优检测性能,然而该算法需要高维矩阵求逆,其复杂度很高,无法保证信号的实时检测。因此提出一种改进Richardson信号检测方法,利用最速下降法和整体修正法改进Richardson算法性能,最速下降法可以提供更有效地搜索路径,得到不同近似解,并且为了提高求解精度,利用整体修正法对不同近似解进行修正,使算法收敛速度更快,同时将算法复杂度数量级由O(K^(3))降低到O(K^(2))。仿真结果表明,该算法只需3次迭代就可接近MMSE,在降低复杂度的同时提高了误码率性能。