提出一种求解安全约束机组组合(security constrained unit commitment,SCUC)问题的邻域搜索外逼近(outer approximation based on neighborhood search,NS-OA)法. OA将SCUC问题分解为一系列混合整数线性规划(mixed integer linear programming,MILP)主问题和非线性规划(nonlinear programming,NLP)子问题,通过MILP主问题和NLP子问题的最优解来逼近SCUC问题的最优解.为克服迭代过程中MILP主问题规模大的不足,利用SCUC问题对应UC问题的最优解为中心来构造邻域,然后在此邻域内搜索MILP主问题的最优解.数值结果表明,所提邻域搜索能有效减小搜索空间,大大提高了算法的计算效率,所提NS-OA算法能有效求解大规模SCUC问题,具有良好的应用前景.
提出一种求解机组组合(unit commitment,UC)问题的改进优先顺序法.利用机组的最小平均煤耗成本,建立UC问题一个新的整数线性规划模型(integer linear programming,ILP),从而将UC问题分解为一个仅含0、1变量的ILP问题和一个二次规划问题,减小了UC问题的规模和求解难度.利用ILP连续松弛问题的最优解,提出一种求解UC问题的改进优先顺序法.数值结果表明,所建ILP模型合理有效,所提方法具有良好的收敛性,和其他优先顺序法相比,获得了更好的数值结果.
为加快最优潮流(optimal power flow,OPF)问题的求解,基于最优中心参数(optimal centering parameter,OCP)及改进多中心校正(improved multiple centrality corrections,IMCC)技术,提出一种求解最优潮流(optimal power flow,OPF)问题的新型快速内点算法(OCP-IMCC interior point method,OCP-IMCCIPM)。结合均衡距离–评价函数(equilibrium distance-quality function,ED-QF),给出最优中心参数评价模型,采用线性化技术对模型近似,以降低模型计算量。利用线搜索技术实现近似模型求解以确定最优中心参数,该参数使得所提算法具有更多的优势步和更少的迭代次数。IMCC技术可进一步拉大迭代步(尤其是非优势步)步长,实现算法更快收敛。14—1047节点系统的仿真结果表明,与其他多种内点算法相比,所提OCP-IMCCIPM算法具有更大的迭代步长和更快的收敛速度以及更好的计算效果。