本文主要给出F-复盖的直积还是一个F-复盖的充分条件和充要条件.假设右R-模类F在直积,直和项下封闭,{M_i}i∈I是一簇右R-模.如果每个φ_i:F_i→M_i都是M_i的具有唯一映射性质的F-复盖,且multiply from i∈I M_i有F-复盖,则可以得到是multiply from i∈I M_i的F-复盖.另外我们证明如果φ_i:F_i→M_i是M_i的F-复盖,且multiply from i∈I M_i有F-复盖,则是multiply from i∈I M_iF-复盖当且仅当multiply from i∈I Kerφ~i不包含multiply from i∈I F_i中的非零直和项.从而改进、推广了文[6]中的相应结果.
Let R be an associated ring with identity. A new equivalent characterization of pure projective left R-modules is given by applying homological methods. It is proved that a left R-module P is pure projective if and only if for any pure epimorphism E→M→0, where E is pure injective, HomR(P, E)→HomR(P, M)→0 is exact. Also, we obtain a dual result of pure injective left R-modules. Furthermore, it is shown that every pure projective left R-module is closed under pure submodule if and only if every pure injective left R-module is closed under pure epimorphic image.