The large-scale assembly and fabrication method for single-walled carbon nanotube(SWCNT) nano devices was implemented.Assembly of SWCNT field effect transistor(FET) was realized by floating potential dielectrophoresis approach.The simulation of floating potential distribution of the chip was performed by comsol multiphysics coupling software.Six hundred devices were assembled on the area of less than one square centimeter.The fabricated devices were characterized by atomic force microscopy and scanning electron microscopy.The experimental results showed that large-scale assembly had been realized,and the success rate of ideal assembly for SWCNT FET had been assessed.
To improve the efficiency of nano-electronic device fabrication, a new method named floating electrical potential assembly is proposed to realize large-scale assembly of Cu/CuO nanowires, The simulation of floating electrical potential distribution on the micro-electrode chip is performed by COMSOL software, and the simulation result shows that the coupled electrical poten- tial on the floating drain electrodes is very close to the original electrical potential applied on the gate electrode, whicb means that the method can provide di-electrophoresis (DEP) force for all the electrode pairs at one time, thus realizing large-scale as- sembly at one time. With Cu/CuO nanowires well dispersed and micro-electrode chip fabrication, nanowires assembly experiments are performed and the experimental results show that Cu/CuO nanowires are assembled at hundreds of micro-electrodes pairs at one time, and the success rate of nanowires assembly also reaches 90%.