A series of single-phase T-structured NdSrCu 1-x Co x O 4-δ with oxygen vacancies and T -structured Sm 1.8 Ce 0.2 Cu 1-x Co x O 4-δ (x: 0–0.4) with oxygen excess were prepared using ultrasound-assisted citric acid complexing method, and characterized by means of techniques such as thermogravimetric analysis and NO temperature-programmed desorption (NO-TPD). The catalytic activities of these materials were evaluated for the decomposition of NO. It was found that the NdSrCu 1-x Co x O 4-δ catalysts were of oxygen vacancies whereas the Sm 1.8 Ce 0.2 Cu 1?x Co x O 4-δ ones possessed excessive oxygen (i.e., over-stoichiometric oxygen); with a rise in Co doping level, the oxygen vacancy density of NdSrCu 1-x Co x O 4-δ decreased while the over-stoichiometric oxygen amount of Sm 1.8 Ce 0.2 Cu 1-x Co x O 4-δ increased. The NO-TPD results revealed that NO could be activated much easier over the oxygen-deficient perovskite-like oxides than over the oxygen-excessive perovskite-like oxides, with the NdSrCuO 3.702 catalyst showing the best efficiency in activating NO molecules. Under the conditions of 1.0% NO/helium, 2800 hr -1 , and 600–900°C, the catalytic activity of NO decomposition followed the order of NdSrCuO 3.702 〉 NdSrCu 0.8 Co 0.2 O 3.736 〉 NdSrCu 0.6 Co 0.4 O 3.789 〉 Sm 1.8 Ce 0.2 Cu 0.6 Co 0.4 O 4.187 〉 Sm 1.8 Ce 0.2 Cu 0.8 Co 0.2 O 4.104 〉 Sm 1.8 Ce 0.2 CuO 4.045 , in concord with the sequence of decreasing oxygen vacancy or oxygen excess density. Based on the results, we concluded that the higher oxygen vacancy density and the stronger Cu 3+ /Cu 2+ redox ability of NdSrCu 1-x Co x O 4-δ account for the easier activation of NO and consequently improve the catalytic activity of NO decomposition over the catalysts.
Jiguang Deng Lei Zhang Yunsheng Xia Hongxing Dai Hong He
La1?xSrxCoO3?δ (x=0, 0.4) nanoparticles have been prepared using the citric acid complex-ing-hydrothermal synthesis coupled method and citric acid complexing method. The physico-chemical properties of these materials were characterized by means of X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), element analysis (EDX), X-ray photoelectron spectroscopic (XPS), oxygen temperature-programmed desorption (O2-TPD), hydrogen temperature-programmed re-duction (H2-TPR) as well as surface area measure-ments and oxidation state titration. Their catalytic performance was examined for the total oxidation of ethylacetate (EA). It is found that the La1?xSrxCoO3?δ (x=0, 0.4) catalysts were single-phase and rhombo-hedrally-structured perovskites and their surface ar-eas ranged from 16 to 26 m2/g. The Sr-doped sample derived from the coupled procedure was uniformly distributed nanoparticles with a short rod-shaped morphology. The doping of Sr (i) enhanced the con-centrations of Co3+ and oxygen vacancies, (ii) in-creased the amount of oxygen adsorbed on the sur-face at low temperatures, (iii) promoted the mobility of lattice oxygen, and (iv) improved the properties of redox. The La0.6Sr0.4CoO2.78 catalyst prepared by the citric acid complexing-hydrothermal synthesis cou-pled strategy performed the best in the oxidation of EA, furthermore no partially oxidized products were formed. Based on the above results, we conclude that in addition to the surface area, the catalytic ac-tivity of the perovskite-type oxide nanoparticles was associated with the structural defect (oxygen vacancy) concentration and redox ability.
NIU Jianrong LIU Wei DAI Hongxing HE Hong Zl Xuehong LI Peiheng