The emission spectrum of AlO radicals was analyzed in 440-540 nm in the reaction of laser ablated Al beam and O 2. The carrier of spectrum was assigned to Δ ν =0, ±1, ±2 vibrational sequences of B 2Σ +-X 2Σ + transition of AlO radicals, the observed maximum vibrational quantum number was ν ′=6. The rotational and vibrational temperatures of B state were estimated at 3000 and 7500 K by spectrally simulating the rovibronic population distribution. There is a strong evidence that the production of excited Al( 2 S ) atoms is essential to the formation of excited AlO radicals.
The exothermic reaction of HCS with OH on the single-state potential energy surface was explored by means of Density Function Theory(DFT). The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies and the zero point energies(ZPE) of all the species in the reaction were computed. Six intermediates and seven transition states were located, three exothermic channels were found. The frequency analysis and the Intrinsic Reaction Coordinate(IRC) calculation confirm that the transitions are truthful. The results indicate that there are three exothermic channels and their corresponding products are: P1(H 2O+CS) , P2(H 2S+CO), P3(OCS+H 2), and P1 has a larger branch ratio.