Databases concerning basic physical properties of materials,such as molar volume,density,thermal expansion coefficient,elastic constants,thermal conductivity,etc.,are essential parts of the underlying knowledge for materials design.While thermodynamic databases provide chemical driving forces and phase equilibrium data,physical property databases provide essential physical parameters,such as volume,lattice constant,lattice misfit,elastic energy,interfacial energy,etc.,for phase transformation and microstructure simulations.Combined with thermodynamic databases,physical property databases established on the basis of the calculation of phase diagram(CALPHAD)method can be used to calculate physical properties together with phase equilibria,phase fractions,phase compositions,and thermodynamic properties for multi-component and multi-phase material systems and for the constituent phases.In this paper,we will discuss in detail various volume models based on the CALPHAD method which are capable of describing experimental data in a wide range from cryogenic temperatures to melting points,from the atmospheric pressure to high pressures for pure substances as well as multi-component and multiphase materials.
The influence of soaking temperature on microstructure of high temperature multi-pass compression deformation for two low carbon steels(steel A:wC=0.032%and wMn=0.25%;steel B:wC=0.165%and wMn=0.38%)is studied on the thermal-mechanical simulator in order to rationalize the hot-rolling schedule of low-carbon steel and to promote the low-temperature heating technology.The results show that the microstructures of steel A are almost not affected by reducing soaking temperature,but the acicular ferrite forms in steel B when the soaking temperature is reduced from 1 200 to 1170℃,due to its smaller initial austenite grain size according to recrystallization kinetics theory.
Texture is one of the important factors affecting sheet metal forming performance.The through-thickness texture gradient during the hot-rolling process of twinning induced plasticity(TWIP)steel sheet was investigated using electron backscatter diffraction and X-ray diffraction.With increasing reduction of the TWIP steel,the fraction of∑1 decreased,whereas the fractions of∑3,∑9,and∑27increased.During 53%reduction,a similar trend could be found from its surface to the center.The gradients of intensities of the fibers decreased with increasing hot-rolling reduction.The intensities of face-centered cubic(fcc)shear textures E and Y were higher in the center than that at the surface for both reductions.During 20% reduction,the intensity of fcc plain strain texture S orientation increased from the center to the surface.
By using a static and high-speed material testing machine, tensile deformation behaviors of two kinds of Si- Mn TRIP (transformation induced plasticity) steels and DP (dual phase) steel were studied in a large range of strain rates (0.001-2000 s 1). Temperature variation during adiabatic heating and the amount of retained austenite at fracture were measured by an infrared thermometer and an Xray stress analyser, respectively. The microstructure of steels was observed by optical microscopy (OM) and scanning electron microscopy (SEM) before and after tensile test. It was found from the experimental results that the tensile strength of these steels increased, and the fracture elonga- tion firstly decreased and subsequently increased, as the strain rate increased in the range "of 0.1 - 2000 s -1. The temperature raised during adiabatic heating of TRIP steel was in the range of 100- 300℃, while that of the DP steel was in the range of 100-220℃ . The temperature rise of these steels increased with increasing the strain rate, as well as the amount of the transformed retained austenite in TRIP steels. It was confirmed that austenite to martensite transformation is not suppressed by adiabatic heating.
在Gleeble-3500热/力模拟试验机上,采用双道次压缩试验研究了0.15C-0.14Si-0.2Mn-0.04Nb钢在高温压缩变形后的静态软化行为,分析了道次停留时间、变形温度、应变速率以及应变量对静态再结晶行为的影响。并通过2%应力补偿法结合流变应力曲线计算出了静态再结晶软化率。研究表明,在其他条件不变的情况下,再结晶软化率随着道次停留时间的延长、变形温度的升高、应变速率的增大以及变形量的增大而增大。还建立了试验钢的静态再结晶动力学模型,获得静态再结晶激活能为188.986 k J/mol。