Up to now, the excited charmed and bottom baryon states have still not been well studied experimentally or theoretically. In this paper, we predict the mass of Ωb, the only L=0 baryon state which has not been observed, to be 6069.2 MeV. The spectra of charmed and bottom baryons with the orbital angular momentum L= 1 are studied in two popular constituent quark models, the Goldstone boson exchange (GBE) model and the one gluon exchange (OGE) hyperfine interaction model. Inserting the latest experimental data from the "Review of Particle Physics", we find that in the GBE model, there exist some multiplets (∑c(b), ≡c(b) and Ωc(b)) in which the total spin of the three quarks in their lowest energy states is 3/2, but in the OGE model there is no such phenomenon. This is the most important difference between the GBE and OGE models. These results can be tested in the near future. We suggest more efforts to study the excited charmed and bottom baryons both theoretically and experimentally, not only for the abundance of baryon spectra, but also for determining which hyperfine interaction model best describes nature.
The phenomenon of the near ppˉ-threshold enhancement observed in the J/ψ → γ pp decay is studied by using the enhancement factor method with a simpler one-pion-exchange potential between p and p. The Jost function caused by the mentioned potential is perturbatively calculated in the zero-th order approximation, and the corresponding enhancement factor is obtained. It is found that such a final state interaction offers an important contribution to the decay width near the ppˉ-threshold, although it is not large enough. To explain the decay data, a phenomenological factor G(p) with the form of 285500/(m 2 π + p 2 ) should be introduced. A further calculation including the p-dependent bare T -matrix, a more realistic N ˉ N potential and the contribution from the higher-order wave functions would provide a better understanding of the decay data and even the existence of the baryonium ppˉ. The near ppˉ-threshold behavior of the decay width in the J/ψ →π 0 pp process is also discussed.
The vacuum fluctuation (VF) effects on the properties of the hyperonic neutron star matter are investigated in the framework of the relativistic mean field (RMF) theory. The VF corrections result in the density dependence of in-medium baryon and meson masses. We compare our results obtained by adopting three kinds of meson-hyperon couplings. The introduction of both hyperons and VF corrections softens the equation of state (EoS) for the hyperonic neutron star matter and hence reduces hyperonic neutron star masses. The presence of the δ field enlarges the masses and radii of hyperonic neutron stars. Taking into account the uncertainty of meson-hyperon couplings, the obtained maximum masses of hyperonic neutron stars are in the range of 1.33M⊙-1.55M⊙.
In the framework of factorization, we study direct CP violation in the decays of B(s) → J/φP(V) (P(V) refer to the pseudoscalar (vector) meson). The CP violation depends strongly on Cabibbo-Kobayashi- Maskawa (CKM) matrix elements and the effective parameter, Nc. The recent experimental data for the branching ratios of B(s) → J/φP(V) are accurate enough and we can give a strong constraint on the range of Arc. We find that the CP violating asymmetry is consistent with the available experiment values for the b→ d transition, and a little smaller than the b→ s transition. We also predict the CP violation of other decay channels for B(s) → J/φP(V). We expect our results can give valuable guidance for experiments.
We study the detection of accelerator neutrinos produced at the China Spallation Neutron Source (CSNS). Using the code FLUKA, we have simulated the production of neutrinos in a proton beam on a tungsten target and obtained the yield efficiency, numerical flux, and average energy of different flavors of neutrinos. Furthermore, detection of these accelerator neutrinos is investigated in two reaction channels: neutrino-electron reactions and neutrino-carbon reactions. The expected numbers of different flavors of neutrinos have also been calculated.
The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting metnocl co fill a large ring acceptance with a small emittance linac beam. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS). The simulation study was done for injection with different momentum spreads, different rms emittances of the injection beam, and different matching conditions. Then, the beam loss, 99% and rms emittances were obtained, and the optimized injection beam parameters were given. The interaction between H- beam and stripping foil was studied, and the effect of foil scattering was simulated. The stripping efficiency was calculated and the suitable thickness of stripping foil was obtained. In addition, the energy deposition on the foil and the beam loss due to the foil scattering were also studied.
After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective ef- fects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction chan- nels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the "beta fit" distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given.