A helix type slow wave structure filled with plasma is immersed in a strong longitudinal magnetic field. Taking into account the effect of the plasma and the dielectric, the system is separated radially into three regions. By means of the sheath model and Maxwell equation, the distribution of the electromagnetic field is established. Using the boundary conditions of each region, the dispersion relation of the slow wave structure is derived. The trend of change for the radial profile of the axial electric field is analysed respectively in different plasma densities, plasma column radius and dielectric constant by numerical computation. Some useful results are obtained on the basis of the discussion.
A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relativistic electron beam with the entire system immersed in a strong longitudinal magnetic field. By means of the linear field theory, the dispersion relation for the relativistic travelling wave tube (RTWT) is derived. By numerical computation, the dispersion characteristics of the RTWT are analysed in different cases of various geometric parameters of the slow wave structure and plasma densities. Also the gain versus frequency for three different plasma densities and the peak gain of the tube versus plasma density are analysed. Some useful results are obtained on the basis of the discussion.
在FEL实验中,电子束通过摇摆器,一方面由于周期性磁场作用,电子束轨迹要周期性的摆动,另一方面还要辐射同FEL辐射波长一致的自发辐射,该辐射谱反映电子束、摇摆器集成后的参数。在CAEP(Institute of China Academic Engineering Physics)远红外100μm FEL实验中,自发辐射谱通过Ge∶Ga低温探头和远红外100μm光栅谱仪测量。文章侧重从实际摇摆器磁场分析了远红外100μm FEL的自发辐射谱。