Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases. Therefore, we set up an irrigation experiment with one watered (W) and one unwatered plot (UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment, Inner Mongolia. UW only received the natural precipitation of 2005 (129 mm), whereas W was additionally watered after the precipitation data of 1998 (in total 427 mm). In the 3-hour resolution, we determined nitrous oxide (N20), methane (CH4) and carbon dioxide (CO2) fluxes at both plots between May and September 2005, using a fully automated, chamber-based measuring system. N20 fluxes in the steppe were very low, with mean emissions (±s.e.) of 0.9-4-0.5 and 0.7-4-0.5 μg N m^-2 h^-1 at W and UW, respectively. The steppe soil always served as a CH4 sink, with mean fluxes of -24.1-4-3.9 and -31.1-4- 5.3 μg C m^-2 h^-1 at W and UW. Nighttime mean CO2 emissions were 82.6±8.7 and 26.3±1.7 mg C m^-2 h^-1 at W and UW, respectively, coinciding with an almost doubled aboveground plant biomass at W. Our results indicate that the ecosystem CO2 respiration responded sensitively to increased water input during the vegetation period, whereas the effects on CH4 and N2O fluxes were weak, most likely due to the high evapotranspiration and the lack of substrate for N2O producing processes. Based on our results, we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia, ecosystem CO2 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited.
To understand the effects of long-term amendment of organic manure and N fertilizer on N2O emission in the North China Plain, a laboratory incubation at different temperatures and soil moistures were carried out using soils treated with organic manure (OM), half organic manure plus half fertilizer N (HOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (NK) and control (CK) since 1989. Cumulative N2O emission in OM soil during the 17 d incubation period was slightly higher than in NPK soil under optimum nitrification conditions (25℃ and 60% water-filled pore space, WFPS), but more than twice under the optimum denitrification conditions (35℃ and 90% WFPS). N2O produced by denitrification was 2.1-2.3 times greater than that by nitrification in OM and HOM soils, but only 1.5 times greater in NPK and NP soils. These results implied that the long-term amendment of organic manure could significantly increase the N2O emission via denitrification in OM soil as compared to NPK soil. This is quite different from field measurement between OM soil and NPK soil. Substantial inhibition of the formation of anaerobic environment for denitrification in field might result in no marked difference in N2O emission between OM and NPK soils. This is due in part to more rapid oxygen diffusion in coarse textured soils than consumption by aerobic microbes until WFPS was 75% and to low easily decomposed organic C of organic manure. This finding suggested that addition of organic manure in the tested sandy loam might be a good management option since it seldom caused a burst of N2O emission but sequestered atmospheric C and maintained efficiently applied N in soil.