In this paper, numerical analysis of GaSb (Eg = 0.72 eV)/Gao.84Ino.16Aso.14Sbo.86 (Eg = 0.53 eV) tandem thermopho- tovoltaic (TPV) cells is carried out by using Silvaco/Atlas software. In the tandem cells, a GaSb p-n homojunction is used for the top cell and a GalnAsSb p-n homojunction for the bottom cell. A heavily doped GaSb tunnel junction connects the two sub-cells together. The simulations are carried out at a radiator temperature of 2000 K and a cell temperature of 300 K. The radiation photons are injected from the top of the tandem cells. Key properties of the single- and dual-junction TPV cells, including I-V characteristic, maximum output power (Pmax), open-circuit voltage (Voc), short-circuit current (/~sc), etc. are presented. The effects of the sub-cell thickness and carrier concentration on the key properties of tandem cells are investigated. A comparison of the dual-TPV cells with GaSb and GalnAsSb single junction cells shows that the Pmax of tandem cells is almost twice as great as that of the single-junction cells.
GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temperature and vapour V/Ⅲ ratio[V/Ⅲ ratio means the molar ratio of trimethylgallium(TMGa) and triethylantimony(TESb)],were systematically investigated to achieve GaSb quantum dots with high quality and high density.The features of surface morphology of uncapped GaSb quantum dots were characterized by atomic force microscope(AFM) images.The results show that the surface morphologies of quantum dots are strongly dependent on growth temperature and vapour V/Ⅲ ratio.GaSb quantum dots with an average height of 4.94 nm and a density of 2.45× 1010 cm-2 were obtained by optimizing growth temperature and V/Ⅲ ratio.
YANG Haoyu LIU Renjun LU You WANG Liankai LI Tiantian LI Guoxing ZHANG Yuantao ZHANG Baolin
The initial growth stage of GaSb on GaAs (001) by low pressure metal-organic chemical vapor deposition (MOCVD) is investigated. The dependence of the nucleation on growth temperature, growth pressure, and vapor V/III ratio is studied by means of atomic force microscopy. The nucleation characteristics include the island density, size, and size uniformity distribution. The nucleation mechanism is discussed by the effects of growth temperature, growth pressure, and vapor V/III ratio on the density, size, and size uniformity of GaSb islands. With the growth temperature increasing from 500℃ to 610℃ and the growth pressure increasing from 50 mbar to 1000 mbar (1 mbar = 10^5 Pa), the island density first increases and then decreases; with the V/III ratio increasing from 0.5 to 3, the trend is contrary.
Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized Ga Sb thin film has a narrow full width at half maximum(358 arc sec) of the(004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of Ga Sb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline Ga Sb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices.