We propose a scheme to coherently control the field-free orientation of NO molecule whose rotational temperature is above 0 K. It is found that the maximum molecular orientation is affected by two factors: one is the sum of the population of M = 0 rotational states and the other is their distribution, however, their distribution plays a much more significant role in molecular orientation than the sum of their population. By adopting a series of linearly polarized pulses resonant with the rotational states, the distribution of M = 0 rotational states is well rearranged. Though the number of pulses used is small, a relatively high orientation degree can be obtained. This scheme provides a promising approach to the achievement of a good orientation effect.
We theoretically investigate the photoelectron emission from an atom irradiated by an amplitude modulated sinusoidally phase-modulated pulse through solving the time-dependent Schr¨odinger equation in the momentum space. By controlling the phase amplitude of the pulse in the frequency domain, it can be found that the photoelectron spectra appear as explicit interference phenomena, which originated from the interference between the directly ionized electron and the ionization of the pre-excited atom from different subpulses.
Hai-Ying YuanFu-Ming GuoDi-Yu ZhangJun WangJi-Gen ChenYu-Jun Yang
The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited, to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments.