We present a statistical study of decimetric type Ⅲ radio bursts, coronal mass ejections (CMEs), and Hα flares observed in the period from July 2000 to March 2005. In total, we investigated 395 decimetric type Ⅲ radio burst events, 21% of which showed apparent correlation to CMEs that were associated with Hα flares. We noticed that the Hα flares which were strongly associated with CMEs were gradual events, and 82% of them took place before CMEs appeared in the field of view of LASCO C2; that most of the CME-associated radio bursts started in the frequency range around 750 MHz with a frequency drifting rate of several hundred MHz s-1, of which both positive and negative ones were recognized; and that the correlation of type Ⅲ radio bursts to CMEs without associated flares is fairly vague, less than 9%.
SHASTA(Sharp and Smooth Transport Algorithm)是求解二维磁流体动力学问题的单一网格程序.在将其用于磁重联问题的数值模拟时,它被修改成为采用自适应网格方法的程序.修改后的程序可以针对扩散区进行细化计算.在SHASTA程序的自适应计算实现过程中,采用了插入式的自适应修改策略,原二维磁流体力学偏微分方程的求解算法被作为独立单元使用.另外,修改中使用分层的数据结构,将每个细化层次的物理量用二维可变数组描述,并标记磁场和压强分布的陡变区为细化区域,再通过插值的方法得到细化层网格点上的物理量分布和边界条件,最后细化区域的细化计算结果被赋予给其上一层网格,并对其内容进行更新.采用细化计算进行的磁重联的模拟实验表明,相比单一网格计算,细节分辨率得到提高,相应的计算时间的增加则与模拟中的参数选择有关;而自适应程序部分带来的计算精度和稳定性的影响则依赖于边界设置、单步长的推进策略和插值算法.
Despite extensive research on various global waves in solar eruptions, debate continues on the intrinsic nature of them. In this work, we performed numerical experiments of the coronal mass ejection with emphases on the associated large-scale MHD waves. A fast-mode shock forms in front of the flux rope during the eruption with a dimming region following it, and the development of a three-component structure of the ejecta is observed. At the flank of the flux rope, the slow-mode shock and the velocity vortices are also invoked. The dependence of the eruption energetics on the strength of the background field and the coronal plasma density distribution is apparent: the stronger the background field is, and/or the lower the coronal plasma density is, the more energetic the eruption is. In the lower Alfven speed environment, the slow mode shock and the large scale velocity vortices may be the source of the EIT wave. In the high Alfvdn speed environment, on the other hand, the echo due to the reflection of the fast shock on the bottom boundary could be so strong that its interaction with the slow mode shock and the velocity vortices produces the second echo propagating downward and causing the secondary disturbance to the boundary surface. We suggest that this second echo, together with the slow shock and the velocity vortices, could constitute a possible candidate of the source for the EIT wave.
太阳活动会引起输变电系统异常,特别是对超长距离输变电系统的危害尤其明显.根据SOHO/LASCO(Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph)的日冕物质抛射(Coronal Mass Ejection,CME)数据、华北电力大学和芬兰气象研究所获得的地磁感应电流(Geomagnetically Induced Current,GIC)数据以及地磁暴数据,分析研究了与GIC事件有关的对地晕状CME的重要观测特征和物理性质.按照对称性将晕状CME进行分类后,发现造成GIC事件的晕状CME主要有3类:完全对称型、亮度不对称型和外形不对称型.不同类型的全晕状CME驱动的GIC事件在强度、持续时间等方面特征各不相同.其中,亮度不对称型晕状CME很有可能对GIC事件影响最为严重.同时注意到GIC与地磁场随时间的变化率也具有较好的相关性.
Solar eruptions and the related processes involve magnetic fields and plasma flows of various scales in both time and space. These processes include the convective motions of the mass and magnetic field in the photosphere, evolutions of magnetic fields in both the chromosphere and the corona prior to and during the disruption of magnetic fields in response to the photospheric motions. These evolutions constitute a whole process of transporting the magnetic energy and the helicity from the photosphere to the corona, and then to interplanetary space. The present work, on the basis of a solar eruption model, discusses these processes, and the related questions, unanswerable at present, but could be the scientific objectives of the space solar missions in the future.
LIN Jun1,21 National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011, China