A model for incipient movement of sediment in rolling pattern was established. In this model, the starting of sediment particles under low transport rate, the exposure degree of sediment, the lateral slope of water surface and the effect of transverse circulating current induced by the hydraulic structure of bend flow were fully considered. A theoretical formula for the incipient velocity of non-cohesive and non-uniform sediment in sloping river bends was developed. The results from the theoretical formula compared well with the experimental data.
Large-sczde structure of river flow is the main driving force for bed erosion-deposition and bank delbrmation. The structure shapes and retains a corresponding hydraulic geometry form. Therefore, the most stable flow structure is the probable natural river plane formation. Natural coordinate transformation and perturbation methods were adapted to deform the governing equations of sine-generated river basic flow and disturbance flow independently. The stability and retention of perturbation waves were analyzed in our model to explain why meandering rivers followed a certain type of tqow path. Computation results showed that all types of perturbation waves in meandering rivers were most stable when the meandering wave number was about 0.39-0.41. We believe that this type of stable flow structure shaped a certain meandering river. The statistical average length-width ratios of Yalin, Habib and da Silva and Leopold and Wolman somewhat confirmed our most stable river mean- dering wave number. In some ways, meandering rivers always tend to diminish internal turbulence intensity.