A study on cosmogenic activation in germanium was carried out to evaluate the cosmogenic background level of natural and ^(70)Ge depleted germanium detectors. The production rates of long-lived radionuclides were calculated with Geant4 and CRY.Results were validated by comparing the simulated and experimental spectra of CDEX-1B detector. Based on the validated codes, the cosmogenic background level was predicted for further tonne-scale CDEX experiment. The suppression of cosmogenic background level could be achieved by underground germanium crystal growth and high-purity germanium detector fabrication to reach the sensitivity requirement for direct detection of dark matter. With the low cosmogenic background, new physics channels,such as solar neutrino research and neutrinoless double-beta decay experiments, were opened and the corresponding simulations and evaluations were carried out.
We report the first results on 76Ge neutrinoless double beta decay from stage one of the China dark-matter experiment (CDEX). A p-type point-contact high-purity germanium detector with a mass of 994g has been installed to detect neutrinoless double beta decay events, as well as to directly detect dark matter particles. An exposure of 304kgd has been analyzed over a wide spectral band from 500keV to 3MeV. The average event rate obtained was about 0.012 counts per keV per kg per day over the 2.039MeV energy range. The half-life of76Ge neutrinoless double beta decay derived based on this result is 70v2〉6.4× 1022 yr (90%C.L.). An upper limit on the effective Majorana-neutrino mass of 5.0eV has been achieved.
暗物质是当今物理学最基本也是最吸引人的前沿研究课题之一,对认识宇宙起源、演变和结构以及物质的本源等基本科学问题具有十分重要的意义.暗物质的理论研究和实验探测经过几十年的积累和发展已经取得了长远的进步.实验上有多种方法可以进行暗物质粒子的探测,直接探测是一种非常重要的手段.本文评述了暗物质直接探测方法的原理和当今国际国内采用直接探测法的不同实验的研究现状,着重介绍了中国暗物质实验(China Dark matter Experiment,CDEX)合作组的研究历程、探测技术和数据分析方法、以及研究取得的重要成果和未来规划.