The current paper focuses on the influence of the process parameters on the peak values of the inter-facial heat transfer coefficient (IHTC) at metal/die interface during high pressure die casting (HPDC) process. A "step shape" casting and AM50 alloy were used during the experiment. The IHTC was de-termined by solving the inverse thermal problem based on the measured temperature inside the die. Results show that the initial die surface temperature (IDST, TDI) has a dominant influence while the casting pressure and fast shot velocity have a secondary influence on the IHTC peak values. By curve fitting, it was found that the IHTC peak value (hmax) changes as a function of the IDST in a manner of hmax =eαTγDI. Such relationship between the IHTC peak value and the IDST can also be found when the casting alloy is ADC12, indicating that this phenomenon is a common characteristic in the HPDC process.
A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die casting (HPDC) process.Experiments were carried out using step shape casting and a commercial magnesium alloy,AM50.Temperature profiles were measured and recorded using thermocouples embedded inside the die. Based on these temperature readings,the HFD and IHTC were successfully determined and the calculation results show that the HFD and IHTC at the metal-die interface increases sharply right after the fast phase injection process until approaching their maximum values,after which their values decrease to a much lower level until the dies are opened.Different patterns of heat transfer behavior were found between the die and the casting at different thicknesses.The thinner the casting was,the more quickly the HFD and IHTC reached their steady states.Also,the values for both the HFD and IHTC values were different between die and casting at different thicknesses.