Polycarboxylate(PC) superplasticizers with different chemical structures were synthesized through free radical co-polymerization reaction.A total organic carbon analyzer was used to investigate adsorption behaviors of PCs,and to evaluate influences of soluble salts on absorption properties of PCs.It is found that adsorption ratios of PCs on cement particles decrease greatly with the addition of Na2SO4;the adsorption ratio of ethers PC with Hydroxyethyl methacrylate(HEMA) group first increases then decreases with the addition of NaCl;the adsorption ratio of esters PC with short side chains first decreases then increases,while the adsorption ratio of ethers PC with HEMA group decreases with the addition of CaCl2;the adsorption ratio of esters PC with short side chains decreases with the addition of Ca(NO3)2;AlCl3 causes the decrease of the adsorption ratio of ethers PC with HEMA group.
The infl uence law of clay on mortar fluidity mixed with polycarboxylate superplasticizer was studied. Several methods of inhibiting clay adsorption of polycarboxylate superplasticizer were discussed. The experimental results show that clay has signifi cant effect on the dispersion of polycarboxylate superplasticizer and montmorillonite clay has more signifi cant impact on mortar fluidity than other clays. The pH value and the salts of the solution can affect the adsorption of clay to polycarboxylate superplasticizer. The incorporation of a small amount of sodium hydroxide solution, sodium silicate or cationic surfactants can improve the effect of the clay on the dispersion of polycarboxylate superplasticizer.
In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning elec- tron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabri- cated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an akernative source material for geopolymer production.
Ze LiuNing-ning ShaoDong-min WangJun-feng QinTian-yong HuangWei SongMu-xi LinJin-sha YuanZhen Wang