This study conducts a comparative analysis between detached eddy simulation(DES)and Unsteady Reynolds-averaged Navier-Stokes(URANS)models for simulating pressure fluctuations in a stilling basin,aiming to assess the URANS mode’s performance in modeling pressure fluctuation.The URANS model predicts accurately a smoother flow field and its time-average pressure,yet it underestimates the root mean square of pressure(RMSP)fluctuation,achieving approximately 70%of the results predicted by DES model on the bottom floor of the stilling basin.Compared with DES model’s results,which are in alignment with the Kolmogorov−5/3 law,the URANS model significantly overestimates low-frequency pulsations,particularly those below 0.1 Hz.We further propose a novel method for estimating the RMSP in the stilling basin using URANS model results,based on the establishment of a quantitative relationship between the RMSP,time-averaged pressure,and turbulent kinetic energy in the boundary layer.The proposed method closely aligns with DES results,showing a mere 15%error level.These findings offer vital insights for selecting appropriate turbulence models in hydraulic engineering and provide a valuable tool for engineers to estimate pressure fluctuation in stilling basins.
Kang LiuHao-ran WangYong-can ChenHui XieZhao-Wei Liu
Accurate and efficient prediction of the aerodynamic performance and flow details of axial-flow com-pressors is of great engineering application value for the aerodynamic design and flow control of axial-flow compres-sors.In this work,a delayed detached eddy simulation method is developed and applied to numerically simulate the tur-bulent channel flow and the aerodynamic performance of NASA Rotor 35.Several acceleration techniques including parallel implementation are also used to speed up the iteration convergence.The mean velocity distribution and Reyn-olds stress distribution in the boundary layer of turbulent channel flow and the aerodynamic performance curve of NASA Rotor 35 are predicted.The good agreement between the present delayed detached eddy simulation results and the available direct numerical simulation results or experimental data confirms the effectiveness of the developed meth-od in the accurate and efficient prediction of complex flow in turbomachinery.
The incompressible unsteady Reynolds-averaged Navier-Stokes(URANS)simulations are performed for a free-running container ship in maneuvering conditions:the starboard and portside turning circle simulations with 35°rudder deflection.The validation variables include trajectory,motions,and propeller performances,and the prediction shows acceptable agreements against the experimental data.During the steady-state part of the turning,the inertial forces balancing the local forces are reported to quantitatively assess the centrifugal force which appears from the force equilibrium between the rudder,propeller,and the bare-hull.The study on the local flow focuses on finding the correlations between the propeller inflow and the propeller performance to investigate the differences in propeller performances during the portside and starboard turning.The preliminary simulations,performed with the grid triplet,comprise propeller open-water,resistance,and self-propulsion simulations,from which the validation studies and the studies for the local force and the local flow are fulfilled and applied for the main simulations.Both propeller and rudder are fully discretized and controlled,mimicking the experiment.Level-set,overset approach and Mentor’s SST model are employed for the free-surface capturing,large motion prediction,and turbulence closure.
Part 2 reports the validation,local force and local flow study results for the free-running added power simulations whose conditions are the same as the self-propulsion test except for the increased propeller rotational speed and the presence of wave.When targeting the same mean Froude number in the wave condition,the propeller requires the increased propeller rotational speed for the operation at the low advance ratio due to the added resistance.The test is performed at five different wavelengths in head waves and four different headings in the oblique waves.For the validation study,the time series of the validation variables is decomposed with discrete Fourier transform to extract the harmonic values.Validation variables are global parameters,including motions,propeller thrust,and torque coefficients,added power variables,and self-propulsion factors which show reasonable agreement against the experiment results and produces a similar error from the self-propulsion simulation.The local force study shows that the added resistance mostly appears at the bow due to the bow plunging during the short head wave and resonance condition.The contributions of the gravitational force and the buoyant force are found to increase as the stern motion exceeds the bow motion during the long head wave condition.The oscillation of the propeller performances shows correlation with the first harmonic amplitude of the propeller inflow.Heave,pitch,and roll decay tests are performed prior to the main test to assess the natural frequencies of the ship.Same as Part 1,a discretized propeller is used.
In this paper,we develop and test a unified hybrid LES/URANS turbulence model with two different Large Eddy Simulation(LES)turbulence models.The numerical algorithm is based on the Boundary Element Method.In the existing hybrid LES/URANS turbulence model we implemented a new Smagorinsky LES turbulence model.The hybrid LES/URANS turbulence model is unified,which means that the LES/URANS interface is changed dynamically during simulation using a physical quantity.In order to define the interface between LES and unsteady Reynolds Averaged Navier Stokes(URANS)zones during the simulation,we use the Reynolds number based on turbulent kinetic energy as a switching criterion.This means that the flow characteristics define where the sub-grid scale or URANS effective viscosity and thermal conductivity are used in the governing equations in the next time step.In unified hybrid turbulence models,only one set of governing equations is used for LES and URANS regions.The developed hybrid LES/URANS model was tested on non-isothermal,unsteady and turbulent Rayleigh-Bénard Convection and compared with an existing model,where LES is based on turbulent kinetic energy.The hybrid turbulence model was implemented within a numerical algorithm based on the Boundary-Domain Integral Method,where a single domain and sub-domain approaches were used.The numerical algorithm uses governing equations written in a velocity-vorticity form.The false transient time scheme is used for the kinematics equation.
The quasi-steady methods based on mixing models have been widely applied to flow computations of turbomachinery multi- stages in aerospace engineering. Meanwhile, the unsteady numerical simulation has also been used due to its ability in obtaining time-dependent flow solutions. In the paper, two different mixing treatments and the corresponding flux balanced ones are presented to exchange the flow solutions on the interfaces between adjacent blade rows. The four mixing treatments are then used for flow computations of a subsonic 1.5-stage axial turbine and a quasi-l.5-stage transonic compressor rotor. The results are compared with those by unsteady numerical method, which is implemented by using the sliding mesh technique. The effects of the quasi-steady and unsteady computation methods on the conservation of flow solutions across the interfaces are presented and addressed. Furthermore, the influence of mixing treatments on shock wave and flow separation of the transonic compressor rotor is presented in detail. All the results demonstrate that the flux balanced mixing treatments can be used for multi-stage flow computations with improved performance on interface conservation, even in the complex flows.