The biosecurity hazards caused by pathogenic fungus have been widely concerned.Given the long-term coexistence of eukaryotic pathogens and quorum sensing bacteria in different habitats in environments,we hypothesized that they have social interactions via signal molecules.In this work,we firstly discovered the well-known bacterial signal molecules play an adverse role in the cell morphology and metabolism in a model pathogen Trichosporon asahii.N-Tetradecanoyl-L-homoserine lactone(C14-HSL)was discovered to increase pathogen hazards of T.asahii,which limited mycelium by 52%,but enhanced cell aggregation by 93%.Higher fluorescence intensity of tryptophan(59%)and aromatic protein(2-fold)contents after the treatment of C14-HSL,indicating that aromatic proteins helped aggregate Trichosporon and showed hydrophobicity.Transcriptome analysis revealed that C14-HSL upregulated the shikimate pathway(above1-fold)located in downstream of tricarboxylic acid cycle,which contributed to the synthesis of more aromatic proteins and the formation of larger flocs.The limited mycelial growth of T.asahii attributed to the up-regulated expressions of cell cycle process.The fungal transboundary response to bacterial C14-HSL was controlled by signal transduction pathways.This study provides new insights into the co-evolution of bacterial and pathogenic fungi in microecosystems.