Novel hydrophilic NaYF4:Yb^3+,Tm^3+@NaGdF4:Ce^3+,Eu^3+double-jacket microtubes(DJMTs)with upconversion/downconversion dual-mode luminescence were designed and prepared through epitaxial growth of NaGdF4:Ce^3+,Eu^3+shell onto the NaYF4:Yb^3+,Tm^3+microtube via poly(acrylic acid)(PAA)mediated hydrothermal method.It is demonstrated that PAA ligand played an important role in guiding the direct growth of NaGdF4:Ce^3+,Eu^3+shell onto the surface of NaYF4:Yb^3+,Tm^3+parent microtubes.The growth of NaGdF4:Ce^3+,Eu^3+shell experienced a crystal phase transition fromβ-NaGdF4 andβ-NaYF4 mixture toβ-NaYF4@NaGdF4 composite crystal,and morphology evolution from mixture ofβ-NaGdF4:Ce^3+,Eu^3+nanorods andβ-NaYF4:Yb^3+,Tm^3+microtubes to NaYF4:Yb^3+,Tm^3+@NaGdF4:Ce^3+,Eu^3+DJMTs.The formation mechanism of DJMTs was the dissolution−renucleation ofβ-NaGdF4:Ce^3+,Eu^3+nanorods and the growth ofβ-NaGdF4:Ce^3+,Eu^3+shell via the classical Ostwald ripening mechanism.The as-prepared DJMTs could exhibit blue upconversion and red downconversion luminescence,which was further made into environmentally benign luminescent inks for creating highly secured and fluorescent-based anti-counterfeiting patterns via inkjet printing.
A series of Tm^3+/Dy^3+co-doped Ba3 LaNa(PO4)3 F(BLNPF) phosphors were synthesized successfully via a high-temperature solid-reaction,and luminescence properties were investigated.Upon near violet excitation,BLNPF:Tm^3+,Dy^3+ phosphors exhibit Tm^3+:^1D2-^3 F4 and Dy^3+:^4 F(9/2)-^6 HJ(J=15/2,13/2,11/2)transitions with diffe rent luminescence intensity.The emitting color of the obtained products was found to shift from blue to white as a result of efficient energy transfer(ET) from Tm^3+to Dy^3+ions.According to photoluminescence emission intensity,the positive effect of activator on ET efficiency was calculated and the maximum ET efficiency was found around 72.6% with Dy^3+ concentration was 0.04.By means of Dexter's theoretical model,furthermore,dipole-dipole interaction was confirmed as the mechanism of energy transfer from Tm^3+ to Dy^3+ ions.The results suggested that BLNPF:Tm^3+,Dy^3+ phosphor might be a promising single-phased white-light-emitting phosphor for UV white-light LED.
Tm3+-doped transparent oxyfluoride glass ceramics containing BaYbxY((1-x))F5 nanocrystals were prepared via high temperature solid phase melting method,of which up-conversion emission is achieved by the Yb3+-mediated energy transfer process.The required photon number of Tm3+ions emissions in BaYbxY(1-x)F5 nanocrystals was calculated through the luminescence spectra,revealing the strong dependence of energy transfer mechanism on Yb3+ions concentration.Meanwhile,based on the fluore scence intensity ratio technology,the effect of different energy transfer mechanism on the temperature sensitivity was investigated by the temperature-dependent luminescence intensity of thermally coupled energy levels of Tm3+:1G4(a),1G4(b).The obtained sensitivity decreases with the increase of Yb3+ions content,which is mainly attributed to the changes in photon absorption process of Tm^3+:1G4(b).
Investigation on the bright and stable upconversion(UC)phosphors with multicolor emissions is fundamental and significant for the frontier applications of display and tempe rature probe.He re,dive rse emitting colors with blue,cyan and yellowish green,which are caused by the energy transfer and crossrelaxation processes,are obtained by altering Er^3+,Tm^3+and Yb^3+concentrations in Er3+singly,Er^3+-Tm^3+-Yb^3+co-and tri-doped double perovskite La2ZnTiO6(LZT)phosphors synthesized by a simple solid-state reaction.In addition,excellent infrared emission at 801 nm located at"first biological windo w"is collected in Tm^3+-Yb^3+co-doped phosphors.Meanwhile,the temperature sensing properties based on the thermally coupled levels((^2H11/2)/(^4S3/2))of Er3+ions were analyzed from 298 to 573 K of LZT:0.15 Er^3+/0.10 Yb^3+phosphor,demonstrating that the maximal sensitivity value is about56×10^-4 K^-1 at 448 K.All these results imply that this kind of UC material has potential applications in display,bioimaging and optical device.
Youfusheng WuFengqin LaiBin LiuZhibiao LiTongxiang LiangYaochun QiangJianhui HuangXinyu YeWeixiong You