Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep information set features from ResNet by modifying its kernel functions to yield Type-1 HanmanNets and then AlexNet, GoogLeNet and VGG-16 by changing their feature maps to yield Type-2 HanmanNets. The two types of HanmanNets exploit the final feature maps of these architectures in the generation of deep information set features from mammograms for their classification using the Hanman Transform Classifier. In this work, the characteristics of the abnormality present in the mammograms are captured using the above network architectures that help derive the features of HanmanNets based on information set concept and their performance is compared via the classification accuracies. The highest accuracy of 100% is achieved for the multi-class classifications on the mini-MIAS database thus surpassing the results in the literature. Validation of the results is done by the expert radiologists to show their clinical relevance.
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy.
High precision pig cough recognition and low computational cost is of great importance for the realization of early warning of pig respiratory diseases.Numerous researchers have improved the recognition rate of pig cough sounds to a certain extent from feature selection and feature fusion perspectives.However,there is still a margin for the improvement in the accuracy and complexity of existing methods.Meanwhile,it is challenging to further enhance the precision of a single classifier.Therefore,this study proposed a multi-classifier fusion strategy based on Dempster Shafer distance(DS-distance)algorithm to increase the classification accuracy.Considering the engineering implementation,the machine learning with low computational complexity for fusion was chosen.First,three metrics of accuracy and diversity between classifiers were defined,including overall accuracy(OA),double fault(DF),and overall accuracy and double fault(OADF),for selecting the base classifiers.Subsequently,a two-step base classifier selection approach based on these metrics was proposed to make an optimized selection of features and classifiers.Finally,the proposed DS-distance algorithm was used to fuse the selected base classifiers to create a classification.The sound data collected in the pig barn verified the proposed algorithm.The experimental results revealed that the overall recognition accuracy of the proposed method could reach 98.76%,which was better than the existing methods.This study has achieved a high recognition accuracy through ensembled machine learning with low computational complexity.The proposed method provided an efficient way for the quick establishment of high precision pig cough recognition model in practice.
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.
Among all the plagues threatening cocoa cultivation in general, and particularly in West Africa, the swollen shoot viral disease is currently the most dangerous. The greatest challenge in the fight to eradicate this pandemic remains its early detection. Traditional methods of swollen shoot detection are mostly based on visual observations, leading to late detection and/or diagnostic errors. The use of machine learning algorithms is now an alternative for effective plant disease detection. It is therefore crucial to provide efficient solutions to farmers’ cooperatives. In our study, we built a database of healthy and diseased cocoa leaves. We then explored the power of feature extractors based on convolutional neural networks such as VGG 19, Inception V3, DenseNet 201, and a custom CNN, combining their strengths with the XGBOOST classifier. The results of our experiments showed that this fusion of methods with XGBOOST yielded highly promising scores, outperforming the results of algorithms using the sigmoid function. These results were further consolidated by the use of evaluation metrics such as accuracy, mean squared error, F score, recall, and Matthews’s correlation coefficient. The proposed approach, combining state of the art feature extractors and the XGBOOST classifier, offers an efficient and reliable solution for the early detection of swollen shoot. Its implementation could significantly assist West African cocoa farmers in combating this devastating disease and preserving their crops.
In this paper, we modify the Bregman APGs (BAPGs) method proposed in (Wang, L, et al.) for solving the support vector machine problem with truncated loss (HTPSVM) given in (Zhu, W, et al.), we also add an adaptive parameter selection technique based on (Ren, K, et al.). In each iteration, we use the linear approximation method to get the explicit solution of the subproblem and set a function to apply the Bregman distance. Finally, numerical experiments are performed to verify the efficiency of BAPGs.
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.