Orderly hierarchical structure with balanced mechanical,chemical,and electrical properties is the basis of the natural bone microenvironment.Inspired by nature,we developed a piezocatalytically-induced controlled mineralization strategy using piezoelectric polymer poly-L-lactic acid(PLLA)fibers with ordered micro-nano structures to prepare biomimetic tissue engineering scaffolds with a bone-like microenvironment(pcm-PLLA),in which PLLA-mediated piezoelectric catalysis promoted the in-situ polymerization of dopamine and subsequently regulated the controllable growth of hydroxyapatite crystals on the fiber surface.PLLA fibers,as analogs of mineralized collagen fibers,were arranged in an oriented manner,and ultimately formed a bone-like interconnected pore structure;in addition,they also provided bone-like piezoelectric properties.The uniformly sized HA nanocrystals formed by controlled mineralization provided a bone-like mechanical strength and chemical environment.The pcm-PLLA scaffold could rapidly recruit endogenous stem cells,and promote their osteogenic differentiation by activating cell membrane calcium channels and PI3K signaling pathways through ultrasound-responsive piezoelectric signals.In addition,the scaffold also provided a suitable microenvironment to promote macrophage M2 polarization and angiogenesis,thereby enhancing bone regeneration in skull defects of rats.The proposed piezocatalytically-induced controllable mineralization strategy provides a new idea for the development of tissue engineering scaffolds that can be implemented for multimodal physical stimulation therapy.